Master Copy 28/02/2020

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO

MD (ANAESTHESIOLOGY) PART IB (BASIC SCIENCES) EXAMINATION – FEBRUARY/MARCH 2020

Date: - 28th February 2020

Time:- 1.00 p.m. - 4.00 p.m.

ESSAY PAPER

Answer each question in a separate book. Answer two (02) questions from each part, marked A, B, C. Each question carries equal marks.

PART A – PHARMACOLOGY

1.

- 1.1. Explain with an illustration, the pharmacokinetic principle of a three compartment model in drug delivery. (30%)
- 1.2. How does this correspond to the delivery of total intravenous anaesthesia (TIVA)? (20%)
- 1.3. Explain "effect-site drug concentration" in relation to an intravenous induction agent. (10%)
- 1.4. What are the benefits of TIVA over inhalational anaesthetic agents? (20%)
- 1.5. Briefly explain, the suitability of remifentanil as an agent or co-agent in TIVA. (20%)

2.		έ.					
2.1.	Explain the mode of action of following drugs	(20%)					
	2.1.1. Suxamethonium						
	2.1.2. Rocuronium						
2.2.	"Rocuronium is a better drug than suxamethonium for rapid sequinduction of anaesthesia". Justify this statement.	ence (30%)					
2.3.	Explain the changes in the pharmacological effects of suxamethonium and rocuronium in						
	2.3.1. liver failure	(20%)					
	2.3.2. renal failure	(15%)					
2.4.	Explain the pharmacological basis for using dantrolene in the management of malignant hyperthermia.	(15%)					
3.							
3.1.	3.1.1. Outline the antiarrhythmic effect of amiodarone.	(10%)					
	3.1.2. List the indications of its use.	(05%)					
	3.1.3. Outline the adverse effects you may encounter when administering this drug.	(10%)					
3.2.	Explain the pharmacological basis of using the following drugs,						
	3.2.1. Ranitidine for stress ulcer prophylaxis.	(20%)					
	3.2.2. Labetalol for reduction of blood pressure.	(20%)					
	3.2.3. Spironolactone in heart failure.	(20%)					
3.3.	List the side effects of the drugs mentioned in 3.2.	(15%)					

Contd..../3-

PART B – PHYSIOLOGY

1.	A	23	year	old	healthy	adult	male	suffers	severe	bleeding	leading	to
	hy	pote	ension	follo	wing tra	uma.						

- 1.1. Illustrate in a graph the sequence of the compensatory responses that occur in the above patient to restore the circulation. (30%)
- 1.2. Briefly explain the mechanisms of the three (03) major responses that will be activated within seconds, according to the illustration above.

 (30%)

1.3. Briefly describe the physiological basis for metabolic acidosis in haemorrhagic shock. (30%)

1.4. Enumerate the reactions that will take place to achieve haemostasis in this patient, using the cell based model. (10%)

2.

- 2.1. Draw a graph indicating lung volumes and capacities. (15%)
- 2.2. Describe with an illustration the physiological changes that occur in functional residual capacity (FRC) and closing volume (CV) with advancing age. (25%)

2.3.

- 2.3.1. What values are obtained using a spirometer to assess lung function?

 Briefly describe each. (20%)
- 2.3.2. Briefly explain with a diagram, changes that can be observed in a spirometry tracing with (40%)
 - (a) restrictive lung disease
 - (b) obstructive lung disease

3.

- 3.1. Describe the liver blood flow. (30%)
- 3.2. Explain the physiological basis for the development of the following conditions in liver dysfunction.

3.2.1. Jaundice (30%)

3.2.2. Encephalopathy (20%)

3.2.3. Ascites (20%)

Contd...../4-

PART C - PHYSICS, CLINICAL MEASUREMENT AND CLINICAL CHEMISTRY

1.						
1.1.	Explain how a plenum vaporizer functions based on physical princ	ciples. (20%)				
1.2.	What factors would affect its accuracy?	(25%)				
1.3.	Explain how above factors are dealt with to achieve optimum performance.	(35%)				
1.4.	Briefly state how the desflurane vaporizer differs from the isoflura vaporizer.	ne (20%)				
2.						
2.1.	What are the features of an ion-selective electrode?	(15%)				
2.2.	Draw a diagram of a plasma pH measuring system.	(20%)				
2.3.	Explain how a value for pH is obtained with the above system.	(50%)				
2.4.	How do you interpret the pH in relation to patient's temperature?	(15%)				
3. Write short notes on:						
3.1.	Sources of error in direct arterial pressure monitoring.	(40%)				
3.2.	Heat and Moisture Exchanger (HME).	(30%)				
3.3.	Hypothesis testing.	(30%)				